Title: Morse Index Stability of Willmore Immersions I A… 继续阅读Morse Index Stability of Willmore Immersions I
调和映射的Pohozaev恒等式
$\newcommand{\div}{\mathrm{div}\,}$ 我们知道调和映射的方程为 $$ \De… 继续阅读调和映射的Pohozaev恒等式
离散平均曲率流的一种数值模拟
给定一个$n$-多边形, 假设其顶点满足方程 \[ \dot v_i(t)=\frac{\nu_i(t)}{\… 继续阅读离散平均曲率流的一种数值模拟
关于代数拓扑曲面分类定理:I
曲面分类定理的第一步是使用三角剖分,将曲面转化为简单多边形。Massey的书上列举了正方体的三角剖分转换为多边… 继续阅读关于代数拓扑曲面分类定理:I
代数拓扑里面简化多边形的作图程序
在代数拓扑里,我们将曲面视为将多边形的对应边粘贴而成的图形。 当然一个重要的问题: 1. 如何将一个闭曲面三角… 继续阅读代数拓扑里面简化多边形的作图程序
Title: The Sharp $p$-Penrose Inequality
Authors: Liam Mazurowski, Xuan Yao
Categories: math.DG math-ph math.CA math.MP
Comments: 19 pages, comments are welcome!
\\
Consider a complete asymptotically flat 3-manifold $M$ with non-negative
scalar curvature and non-empty minimal boundary $\Sigma$. Fix a number $1 < p <
2$. We prove a sharp mass-capacity inequality relating the ADM mass of $M$ with
the $p$-capacity of $\Sigma$ in $M$. Equality holds if and only if $M$ is
isometric to a spatial Schwarzschild manifold with horizon boundary. This
inequality interpolates between the Riemannian Penrose inequality when $p\to 1$
and Bray's mass-capacity inequality for harmonic functions when $p\to 2$. To
prove the mass-capacity inequality, we derive monotone quantities for
$p$-harmonic functions on asymptotically flat manifolds which become constant
on Schwarzschild.
\\ ( https://arxiv.org/abs/2305.19784 , 20kb)