Warning: Undefined array key 0 in /volume1/web/wordpress/blog/wp-content/plugins/wp-geshi-highlight/geshi/geshi.php on line 2389 Call Stack: 0.0001 360320 1. {main}() /volume1/web/wordpress/blog/index.php:0 0.0001 360624 2. require('/volume1/web/wordpress/blog/wp-blog-header.php') /volume1/web/wordpress/blog/index.php:17 0.2716 3517016 3. require_once('/volume1/web/wordpress/blog/wp-includes/template-loader.php') /volume1/web/wordpress/blog/wp-blog-header.php:19 0.2716 3517016 4. do_action($hook_name = 'template_redirect') /volume1/web/wordpress/blog/wp-includes/template-loader.php:23 0.2716 3517232 5. WP_Hook->do_action($args = [0 => '']) /volume1/web/wordpress/blog/wp-includes/plugin.php:522 0.2716 3517232 6. WP_Hook->apply_filters($value = '', $args = [0 => '']) /volume1/web/wordpress/blog/wp-includes/class-wp-hook.php:365 0.2719 3518080 7. wp_geshi_main('') /volume1/web/wordpress/blog/wp-includes/class-wp-hook.php:341 0.2957 3521968 8. wp_geshi_highlight_and_generate_css() /volume1/web/wordpress/blog/wp-content/plugins/wp-geshi-highlight/wp-geshi-highlight.php:150 0.3026 3530304 9. GeSHi->parse_code() /volume1/web/wordpress/blog/wp-content/plugins/wp-geshi-highlight/wp-geshi-highlight.php:343 计算$\sum_{n=1}^\infty\frac{1}{(n+a)(n+b)(n+c)}$的值 – MathRlife

计算$\sum_{n=1}^\infty\frac{1}{(n+a)(n+b)(n+c)}$的值

SE上有关无穷求和(欧拉和)
\begin{equation}\label{eq:n2}
\sum_{n=1}^\infty\frac{1}{n^2}
\end{equation}
的讨论。参考Different methods to compute $\sum_{k=1}^\infty\frac{1}{k^2}$ (Basel problem).

我的问题是, 如何用他们的办法求
\begin{equation}\label{eq:n3}
\sum_{n=1}^\infty\frac{1}{(n+a)(n+b)(n+c)}
\end{equation}
注意到
$$
\sum_{n=1}^\infty\frac{1}{n^3}
$$
是$\zeta(3)$并不能准确算出来(不能用已知常数表示)。

MMA模拟可知, 对不完全相同的$a,b,c$, \eqref{eq:n3}的值是可以具体计算的。

<code>max = 3;
Table[{a, b, c}, {a, 0, max}, {b, 0, max}, {c, b + 1, max}];
list = Flatten[%, 2];
DeleteDuplicates[%, (Sort[#1] == Sort[#2]) &]
f[a_, b_, c_] := {a, b, c, 
  Sum[1/((n + a) (n + b) (n + c)), {n, 1, \[Infinity]}]}
Apply[f, %%, {1}] // TableForm
</code>

其结果如下
\begin{array}{cccl}
a & b & c & \sum\limits_{n=1}^\infty\frac{1}{(n+a)(n+b)(n+c)}\\
\hline
0 & 0 & 1 & -1+\frac{\pi ^2}{6} \\
0 & 0 & 2 & \frac{1}{24} \left(-9+2 \pi ^2\right) \\
0 & 0 & 3 & \frac{1}{54} \left(-11+3 \pi ^2\right) \\
0 & 1 & 2 & \frac{1}{4} \\
0 & 1 & 3 & \frac{7}{36} \\
0 & 2 & 3 & \frac{5}{36} \\
1 & 0 & 1 & 2-\frac{\pi ^2}{6} \\
1 & 1 & 2 & \frac{1}{6} \left(-9+\pi ^2\right) \\
1 & 1 & 3 & \frac{1}{24} \left(-17+2 \pi ^2\right) \\
1 & 2 & 3 & \frac{1}{12} \\
2 & 0 & 2 & \frac{1}{12} \left(12-\pi ^2\right) \\
2 & 1 & 2 & \frac{1}{12} \left(21-2 \pi ^2\right) \\
2 & 2 & 3 & \frac{1}{12} \left(-19+2 \pi ^2\right) \\
3 & 0 & 3 & \frac{1}{324} \left(213-18 \pi ^2\right) \\
3 & 1 & 3 & \frac{1}{36} \left(32-3 \pi ^2\right) \\
3 & 2 & 3 & \frac{1}{36} \left(61-6 \pi ^2\right) \\
\end{array}

发表评论

您的邮箱地址不会被公开。 必填项已用 * 标注

This site uses Akismet to reduce spam. Learn how your comment data is processed.