通过计算, 好像Yang–Mills方程即使在库伦规范下也不是严格椭圆的啊? 我记得Yang–Mills方程主项是$dd^*A+d^*dA$, 其中$A=A_idx^i$. 则其弱形式是 $$ \int\langle d^*A,d^*B\rangle+\langle dA,dB\rangle=0,\quad\forall B=B_jdx^j\in C_0^\infty. $$ 直接计算, 我们知道 \begin{align*} dA&=d(A_idx^i)=\partial_jA_idx^j\wedge dx^i\\ dB&=\partial_k B_ld^k\wedge dx^l\\ d^*A&=-*d*A=-*d\left((-1)^{i-1}A_idx^1\wedge\cdots\wedge\widehat{dx^i}\wedge\cdots\wedge dx^n\right)\\ &=-*(\partial_iA_idx^1\wedge\cdots dx^n)\\ &=-\partial_iA_i\\ d^*B&=-\partial_kB_k. \end{align*}