假设$\phi\mathpunct{:}(M,g)\to(N,h)$是两个$n$维黎曼流形间的光滑映照。我们的目标是来定义该映照的Jacobian。这对定义映照的度是非常重要的。 该定义最重要的是与流形上的坐标选取无关。为此假设$M$上有两套坐标系且其转化函数为$\Phi\mathpunct{:}(x^1,x^2,\ldots,x^n)\to(y^1,y^2,\ldots,y^n)$. 类似地,$N$上也有两套坐标系且其转化函数为$\Psi\mathpunct{:}(u^1,u^2,\ldots,u^n)\to(v^1,v^2,\ldots,v^n)$. 这样, 我们知道度量的局部表示为: \begin{align*} \tilde g_{kl}&=g\left(\frac{\partial}{\partial y^k},\frac{\partial}{\partial y^l}\right),\quad\tilde h_{\alpha\beta}=h\left(\frac{\partial}{\partial v^\alpha},\frac{\partial}{\partial v^\beta}\right),\\ g_{ij}&=g\left(\frac{\partial}{\partial x^i},\frac{\partial}{\partial x^j}\right) =g\left(\frac{\partial y^k}{\partial x^i}\frac{\partial}{\partial y^k},\frac{\partial y^l}{\partial x^j}\frac{\partial}{\partial y^l}\right)=\frac{\partial y^k}{\partial x^i}\frac{\partial y^l}{\partial x^j}\tilde g_{kl},\\ h_{\alpha\beta}&=\frac{\partial v^\gamma}{\partial u^\alpha}\frac{\partial v^\delta}{\partial u^\beta}\tilde h_{\gamma\delta}. \end{align*}