Posted on December 13, 2017Categories MATHTags , ,   Leave a comment on 黎曼流形上函数的Bochner公式

黎曼流形上函数的Bochner公式

Bochner公式给出了黎曼流形上函数的Laplace与曲率之间的关系。 Theorem 1 (Bochner公式). 假设$u$是黎曼流形$M$上一个光滑函数, $v=\frac{1}{2}|\nabla u|^2$, 则有 $$ \Delta v=\mathrm{Ric}(\nabla u,\nabla u)+\langle\nabla u,\nabla\Delta u\rangle+|\mathrm{Hess}_u|^2. $$

Posted on December 7, 2017Categories MATHTags , , , ,   Leave a comment on 线丛上的联络、曲率、和乐群以及陈类

线丛上的联络、曲率、和乐群以及陈类

Contents Contents 1.  线丛的定义 1. 线丛的定义 线丛是向量丛的最简单的实例。 Definition 1. 流形$M$(不一定复)上的一个(复)线从$(L,\pi)$, 这里$L$是一个流形, $\pi:L\to M$是光滑满射, 使得 每个纤维$L_m:=\pi^{-1}(m)$是一个1维(复)线性空间;局部平凡:对任意的$m\in M$, 存在$M$的开邻域$U\ni m$以及光滑微分同胚$\phi:\pi^{-1}(U)\to U\times\mathbb{C}$, 使得$\phi(L_m)=\{m\}\times \mathbb{C}$且$\phi|_{L_m}$是一个线性同构。

Posted on November 23, 2017Categories MATHTags , , ,   Leave a comment on Neuman边值与Dirichlet边值的反射延拓

Neuman边值与Dirichlet边值的反射延拓

我们考虑上半圆盘$D$上最简单的Laplace方程: \begin{equation}\label{eq:n} \begin{cases} \Delta u=f\in L^2(D),&x\in D\\ \frac{\partial u}{\partial \nu}=0,&x\in\partial D \end{cases} \end{equation} 与 \begin{equation}\label{eq:d} \begin{cases} \Delta u=f\in L^2(D),&x\in D\\ u=0,&x\in\partial D. \end{cases} \end{equation} Theorem 1. 若我们对\eqref{eq:n}, 作偶延拓$w(x)=\begin{cases}u(x),&x\in D\\ u(x^*),&x\in D^-\end{cases}$; 对\eqref{eq:d}作奇延拓$w(x)=\begin{cases}u(x),&x\in D\\-u(x^*),&x\in D^-\end{cases}$. 则可验证, 延拓后的$w$是方程\eqref{eq:d}在$B=D\cup D^-$上的$W^{1,2}$弱解。

Posted on November 16, 2017Categories MATHTags , ,   Leave a comment on 共形变换下曲率关系的活动标架计算方法

共形变换下曲率关系的活动标架计算方法

假设$(M,g)$是黎曼流形, 令$\tilde g=e^{2\phi} g$, 这里$\phi$是$M$上一个光滑函数. 这时称$(M,g)$与$(M,\tilde g)$共形. 我们感兴趣的是, 共形变换下曲率之间的关系. 活动标架 为此, 我们用活动标架法(用自然标架计算可以参考我写的Notes). 假设$\set{e_i}$是$(M,g)$的一个幺正标架场, $\set{\omega^i}$是其对偶标架场. $\nabla,\widetilde\nabla$分别表示对应于$g,\tilde g$的黎曼联络, 相应的联络1形式记为$\omega^i_j,\widetilde\omega^i_j$. (回忆, 给定一个联络$\nabla$, 以及一个局部标架场$\set{e_i}$, 联络1形式$\set{\omega^i_j}$由下式定义:$\nabla_X(e_j)=\omega^i_j(X)e_i.$)

Posted on November 16, 2017Categories MATHTags , , , ,   Leave a comment on 共形平坦的黎曼曲面的共形函数所满足的方程

共形平坦的黎曼曲面的共形函数所满足的方程

$\newcommand{\set}[1]{\left\{#1\right\}}\newcommand{\Lp}{\Delta\,}$事实上, 假设$\rd s^2=g_{ij}\rd x^i\rd x^j$是$M^2=(\Omega,g)$上的Riemann度量. 要使$M^2$ 是共形平坦的, 那么 \[ \rd s^2=g^{ij}\rd x_i\rd x_j=e^{2\lambda u}\left((\rd x_1)^2+(\rd x_2)^2\right). \] 下面, 我们用活动标架法来计算$M^2$的高斯曲率$K$.