ON THE BLOW-UP OF YANG-MILLS FIELDS IN DIMENSION FOUR In this paper, we study the blow-up of a sequence of Yang-Mills connection with bounded energy on a four manifold. We prove a set of equations relating the geometry of the bubble connection at the infinity with the geometry of the limit connection at the energy concentration point. These equations exclude certain scenarios from happening, for example, there is no sequence of Yang-Mills SU(2) connections on S4 converging to an ASD … Continue reading “ON THE BLOW-UP OF YANG-MILLS FIELDS IN DIMENSION FOUR”
实向量空间的复化
1. 两个向量空间的张量积 1.1. 两个向量空间的乘积空间 假设$V,W$是实数域$\mathbb{R}$上的两个向量空间。则容易验证乘积空间$V\times W$也是实向量空间。$V\times W$上的加法与数乘定义为 \[ (v,w)+(v’,w’)=(v+v’,w+w’),\quad \lambda(v,w)=(\lambda v,\lambda w). \] 称函数$f:V\times W\to \mathbb{R}$是双重实线性的,如果 \begin{align*} f( (v+v’,w) )&=f( (v,w) )+f( (v’,w) ),\\ f( (v,w+w’) )&=f( (v,w) )+f( (v,w’) ). \end{align*} 以及 \begin{align*} f( (\lambda v,w) )&=\lambda f((v,w)),\\ f( (v,\lambda w) )&=\lambda f((v,w)). \end{align*} $V\times W$上全体双重实线性函数构成一个实向量空间,记作$(V\times W)^*$, 它是$V\times W$的对偶空间. 事实上,定义其上的加法和数乘如下 \begin{align*} (f+g) \left((v,w)\right)&=f\left( (v,w) \right)+ g\left( (v,w)\right),\\ (\lambda f)\left( (v,w) \right)&=f\left( \lambda(v,w) \right)=\lambda f\left( (v,w) \right). \end{align*} 容易验证,$(V\times W)^*$在上述加法和数乘下成为一个实向量空间。
Inverse mean curvature flow and Ricci-pinched three-manifolds
Inverse mean curvature flow and Ricci-pinched three-manifolds Gerhard Huisken, Thomas Koerber Let (M,g) be a complete, connected, non-compact Riemannian three-manifold with non-negative Ricci curvature satisfying Ric≥εtr(Ric)g for some ε>0. In this note, we give a new proof based on inverse mean curvature flow that (M,g) is either flat or has non-Euclidean volume growth. In conjunction with results of J. Lott and of M.-C. Lee and P. Topping, this gives an alternative proof of a conjecture of R. Hamilton recently proven … Continue reading “Inverse mean curvature flow and Ricci-pinched three-manifolds”
Grönwall不等式及其在常微分方程解关于参数的光滑依赖性中的应用
1. Grönwall不等式 Theorem 1 (Grönwall 不等式). 假设 $u,v:[a,b]\to\mathbb{R}$ 是连续函数, 且 $u\geq0$. 如果 \[ v(t)\leq C+\int_a^t v(s)u(s)\rd s,\quad t\in [a,b], \] 这里 $C$ 是一个常数, 那么 \[ v(t)\leq C\exp\left( \int_a^t u(s)\rd s \right). \]
关于连通和的一些基本知识
1. 连通和的定义 Definition 1. 假设$S_1,S_2$是两个曲面,$D_1\subset S_1$, $D_2\subset S_2$是两个开圆盘,即它们都同胚于标准欧氏平面上的单位圆盘。将$D_i$在$S_i$里的补集记作$S_i’$, 即$S_i’=S_i\setminus D_i$, $i=1,2$. 选取同胚映射$h:\partial D_1\to \partial D_2$, 则我们可以构造如下曲面$S_1\#S_2$:它是无交并集$S_1\sqcup S_2$商掉等价关系$\sim$, $x\sim y=h(x)$, 得到的商空间。即$S_1\#S_2=S_1\sqcup S_2/\sim$. 可以证明上述定义是良好的,即不依赖于圆盘$D_1, D_2$以及同胚映射$h$的选取。
Mobius带的参数化以及一些计算
1. 参数方程 考察三维空间中一根长度为一的细棍,在初始时刻它位于$P(a,0,0)$且垂直于$xy$平面, 其中$a >0$. 现在沿着$xy$平面上半径为$a$的圆周匀速转动的同时,还在它于原点形成的平面上绕着$P$匀速转动,且要求$t=2\pi$时,恰好转动半周。则在时刻$t$, 细棍上一点的位置为$(a\cos t, a\sin t,0)+u\sin(t/2)(\cos t, \sin t,0)+(0,0,\cos(t/2))$, 即 \[ \begin{cases} x=\cos t(a+u\sin(t/2)),\\ y=\sin t(a+u\sin(t/2)),\\ z=u\cos(t/2), \end{cases} \] 这里,$t\in[0,2\pi]$, $u\in[-1,1]$. 一个图片可以参考 Figure 1. Mobius带