给定一个$n$-多边形, 假设其顶点满足方程
\[
\dot v_i(t)=\frac{\nu_i(t)}{\| \nu_i(t) \|^2},
\]
其中$\nu_i(t)$是顶点$v_{i-1},v_i,v_{i+1}$构成的三角形之外接圆心。它可以视为连续情形下的曲线平均曲率流的一种离散推广。
我们知道连续情形下,平均曲率流有所谓的Gage-Hamilton-Grayson定理,它表明平均曲率流保持简单曲线为简单曲线。
但下面的数值模拟表面,这个平均曲率流不一定保持曲线的简单性。
\documentclass[border=5mm]{standalone} \usepackage{luamplib} \begin{document} \mplibtextextlabel{enable} \mplibnumbersystem{double} \begin{mplibcode}
\end{mplibcode} \end{document}
一个输出为,给定顶点如下
(luamplib) {randomseed:=164.13048854794684} (luamplib) >> "z[1]= (7.1663813354355792,2.115410943910577)" (luamplib) {randomseed:=1282.7618269274324} (luamplib) >> "z[2]= (6.1198547032965198,3.1294415485934794)" (luamplib) {randomseed:=403.39625352345581} (luamplib) >> "z[3]= (5.3874308800111868,4.8324648551767311)" (luamplib) {randomseed:=3339.1733235391926} (luamplib) >> "z[4]= (3.5465950228343885,6.1858621289233282)" (luamplib) {randomseed:=1839.1381135784272} (luamplib) >> "z[5]= (1.2672314185221965,7.8164049682362586)" (luamplib) {randomseed:=3420.0974717036256} (luamplib) >> "z[6]= (-3.7256314873696939,6.8671219483403938)" (luamplib) {randomseed:=510.18410242830026} (luamplib) >> "z[7]= (-5.6650842541666693,6.4155586555366675)" (luamplib) {randomseed:=12.746562895524596} (luamplib) >> "z[8]= (-7.3959720323999152,5.2194560696781931)" (luamplib) {randomseed:=1303.1675809171504} (luamplib) >> "z[9]= (-6.7246625396621438,1.5797575825552226)" (luamplib) {randomseed:=1827.3952890813218} (luamplib) >> "z[10]= (-9.1673328058487815,-0.45325023466673714)" (luamplib) {randomseed:=7.8023681259649997} (luamplib) >> "z[11]= (-9.510793507129911,-3.9190636005348356)" (luamplib) {randomseed:=1418.1949241054936} (luamplib) >> "z[12]= (-7.425895076183326,-4.2579680419470947)" (luamplib) {randomseed:=1480.3974041179326} (luamplib) >> "z[13]= (-3.3223499681157214,-6.4744847060536879)" (luamplib) {randomseed:=876.68583251129962} (luamplib) >> "z[14]= (-1.8601946468263932,-6.6736668112858331)" (luamplib) {randomseed:=2646.6707481852013} (luamplib) >> "z[15]= (-0.45124071673288363,-9.4417326012844018)" (luamplib) {randomseed:=132.57237941859191} (luamplib) >> "z[16]= (2.9170180427407999,-8.5078926786590099)" (luamplib) {randomseed:=1047.8092142440955} (luamplib) >> "z[17]= (4.2494809218946745,-6.7105559485829076)" (luamplib) {randomseed:=2021.5000778674312} (luamplib) >> "z[18]= (8.0277937535304655,-3.4644864211184609)" (luamplib) {randomseed:=2055.7357077356655} (luamplib) >> "z[19]= (10.187937026289996,-3.2670946608207374)" (luamplib) {randomseed:=3756.315583007492} (luamplib) >> "z[20]= (8.0942754644586294,-0.78244053305555517)"