该读书笔记来自Topology and Groups. 1. 复叠映射的两个例子 Example 1. 假设$S=\mathbb{C}\setminus\left\{ 0 \right\}$, 考察连线映射$p: S\to S$, $p(z)=z^2$. 它是一个$2$重满射, 而且局部上有逆映射. 事实上, 如果我们割掉半直线$B^-:=\left\{ z\in S:\mathrm{Im}(z)=0, \mathrm{Re}(z)<0 \right\}$, 则可定义 \[ q_{\pm}: \mathbb{C}\setminus B^-\to \mathbb{C}\setminus\left\{ 0 \right\}, \] 使得$p(q_{\pm}(z))=z$. 这里, $q_{-}=-q_{+}$. 完全类似地, 我们也可以割掉$B^+:=\left\{ z\in S:\mathrm{Im}(z)=0, \mathrm{Re}(z)>0 \right\}$, 进而得到两个映射 \[ \bar{q}_{\pm}: \mathbb{C}\setminus B^+\to \mathbb{C}\setminus\left\{ 0 \right\}, \] 使得$p(\bar{q}_{\pm}(z))=z$.
Liouville定理与特殊线性群的李代数
Theorem 1. 假设$A(t)$是$n\times n$的单参数$n$阶方阵, $t\in(-\epsilon,\epsilon)$. 若$A(t)$是由$X(t)$生成的, 即满足 \[ A'(t)=X(t)A(t),\quad\forall t\in(-\epsilon,\epsilon), \] 则 \[ \left( \det A(t) \right)’=\mathrm{tr}\left( X(t) \right)\det A(t). \]
PATH INTEGRAL TECHNIQUES ON RIEMANNIAN MANIFOLDS https arxiv…
PATH INTEGRAL TECHNIQUES ON RIEMANNIAN MANIFOLDS: https://arxiv.org/pdf/2106.13905.pdf
The Integral Geometric approach to geometrical quantities https…
The Integral Geometric approach to geometrical quantities: https://www.math.harvard.edu/media/tng.pdf
MINKOWSKI INEQUALITY ON COMPLETE RIEMANNIAN MANIFOLDS WITH NONNEGATIVE…
[MINKOWSKI INEQUALITY ON COMPLETE RIEMANNIAN MANIFOLDS WITH NONNEGATIVE RICCI CURVATURE](https://www.researchgate.net/profile/Luca-Benatti/publication/348563381_Minkowski_Inequality_on_complete_Riemannian_manifolds_with_nonnegative_Ricci_curvature/links/60c7068e299bf1949f57ef09/Minkowski-Inequality-on-complete-Riemannian-manifolds-with-nonnegative-Ricci-curvature.pdf)