回忆, $\alpha$-杨米尔斯–希格斯场的方程为方程组 $$ \Delta a_j^\beta=2\left( -a_i^\gamma \partial_ia_j^\delta g_{\gamma\delta}^\beta+\Upsilon h_{ab}(u)u_{|j}^a\lambda_\beta^b(u)+F_{ij}^\gamma a_i^\delta g_{\beta\delta}^\gamma \right), $$ 与 $$ \mathrm{div}(\Upsilon h_{ab}u_{|i}^a)=\Upsilon h_{ad}(u)u_{|i}^a\left( \Gamma_{bc}^d(u)\partial_iu^c+A_{bi}^d(u) \right)+\mu(u)\cdot\left[ \nabla_{\partial_{f^b}}\mu \right](u), $$ 其中$\Upsilon=\alpha(1+\lvert \nabla_Au \rvert^2)^{\alpha-1}=\alpha\left(1+h_{ab}(u)(\partial_iu^a+a_i^\beta\lambda_\beta^a(u))(\partial_iu^b+a_i^\gamma\lambda_\gamma^b(u))\right)^{\alpha-1}$, $u_{|i}^a=\partial_iu^a+a_i^\beta \lambda_\beta^a(u)$, $F_{ij}^\gamma=(\partial_ia_j^\gamma-\partial_ja_i^\gamma)+2a_i^\beta a_j^\delta g_{\beta\delta}^\gamma$, $A_{bi}^d(u)=a_i^\beta\left(\partial_{f^b}\lambda_\beta^d(u)+\lambda_\beta^c(u)\Gamma_{bc}^d(u)\right)$, 而$h$, $\Gamma$, $\lambda$, $\mu$ 是 $u$的光滑函数. 按照定义 $[v_\beta,v_\gamma]=g_{\beta\gamma}^\delta v_\delta$, $\left\{ g_{\beta\gamma}^\delta \right\}$ 称为李代数的结构常数.