Posted on June 10, 2023Categories MATHTags ,   Leave a comment on Jensen不等式

Jensen不等式

回忆,定义在区间$I=(a,b)$上的函数$\varphi$称为凸函数, 如果对任意的$a < x < b$, $a < y < b$, 以及任意的$0\leq\lambda\leq1$, 成立如下不等式 \begin{equation} \varphi\left( (1-\lambda)x+\lambda y \right)\leq (1-\lambda)\varphi(x)+\lambda\varphi(y). \label{eq:convex} \end{equation} 从图形上, 假设$a < s < t < u < b$, 令 $t=(1-\lambda)s+\lambda u$, 则$\lambda= \frac{t-s}{u-s}$, $1-\lambda= \frac{u-t}{u-s}$, 从而\eqref{eq:convex}得到 \[ \varphi(t)\leq (1-\lambda)\varphi(s)+\lambda \varphi(u)\iff (1-\lambda)(\varphi(t)-\varphi(s))\leq \lambda \left( \varphi(u)-\varphi(t) \right), \] 故 \[ \frac{\varphi(t)-\varphi(s)}{t-s}\leq \frac{\varphi(u)-\varphi(t)}{u-t}. \]